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Abstract. Distinct clusters are important in data analysis because they
clarify underlying patterns within datasets. Lowering cohesion metrics
in clustering, such as measures that capture the average distance be-
tween data points within clusters, contributes to clearer cluster defi-
nitions. Reduced cohesion metrics imply closer proximity of data points
within clusters to their centroids, meaning higher intra-cluster similarity.
To improve the cohesion of clustering algorithms such as K-Means and
K-means++, Self-Organizing Maps (SOMs) were looked to in order to
topologically preserve the data whilst reducing them to fewer neurons. To
compare the results of the SOM with other clustering techniques, both
K-means and K-means++ algorithms were initially evaluated on the
overall dataset. This preliminary evaluation provided a benchmark for
clustering performance, allowing a comparative analysis with the SOM
approach. After assessing K-means and K-means++ on the dataset, the
Self-Organizing Maps algorithm was then applied. The intention was to
explore how SOM, known for its capability to uncover topological struc-
tures, fared against traditional centroid-based approaches in capturing
intricate data relationships.

Keywords: Clustering · Cohesion Metrics · K-Means · K-Means++ ·
Self-Organizing Maps.

1 Introduction

Unsupervised learning is a branch of machine learning where algorithms explore
and identify inherent patterns, structures, or relationships within unlabeled data.
Unlike supervised learning, this approach deals with datasets lacking explicit
output labels.

In unsupervised learning, algorithms work to unveil hidden structures within
data. They strive to uncover patterns or relationships based solely on input
features (X) without the guidance of labeled output (Y ).

Clustering: Clustering algorithms segment data into groups based on similar-
ities among data points. Examples include K-means, DBSCAN, and hierarchical
clustering.
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Unsupervised learning models inherently seek patterns or structures within
data without the need for labeled outputs. The training process involves discov-
ering inherent relationships or clusters from the input features to reveal insights
or provide meaningful representations of the data.

Distinct clusters are important in data analysis because they clarify under-
lying patterns within datasets. Lowering cohesion metrics in clustering, such as
measures that capture the average distance between data points within clus-
ters, contributes to clearer cluster definitions. Reduced cohesion metrics imply
closer proximity of data points within clusters to their centroids, meaning higher
intra-cluster similarity. Simultaneously, it indicates larger separations between
clusters, leading to clusters with more well-defined boundaries. This reduction
in cohesion metrics enables a clearer distinction between different groups within
the data, enhancing the interpretability and usefulness of the clustering results
in unsupervised learning scenarios.

2 Related work

In this research paper, our approach is entirely unique, as no previous works
have integrated both K-Means and SOM together. While the commonality lies
in the utilization of a clustering algorithm, we did not identify any other resem-
blances to existing literature. It is crucial to highlight that the references cited in
this section diverge in terms of applications, encompassing datasets and models
distinct from those explored in this paper.

2.1 SOM-KNN for Classification Tasks

Angusto and Emı́lio’s SOM-KNN approach, integrating Self-Organizing Maps
(SOM) with K-Nearest Neighbor (KNN), demonstrates strengths in classifica-
tion speed and competitive recognition rates. Utilizing SOM as a pre-processing
step efficiently narrows input patterns to a subset akin to the target pattern,
enhancing subsequent KNN classification speed while maintaining competitive
accuracy. The strengths stem from the synergistic use of SOM’s clustering and
KNN’s decision-making based on neighboring patterns. Experimental results not
only confirm SOM-KNN’s effectiveness but also highlight its equivalence in recog-
nition rates to benchmarking KNN classifiers. However, like any approach, there
are weaknesses to consider, such as challenges in border regions of the SOM Map
impacting classification sharpness, particularly when Best Match Unit (BMU)
neurons are in these areas. Additionally, parameters like the pattern number
(pn) in the SOM-KNN approach require careful consideration and may influ-
ence performance, necessitating further exploration and optimization. Despite
these limitations, SOM-KNN’s strengths in improved speed and competitive ac-
curacy position it as a promising method for classification tasks, particularly in
scenarios prioritizing efficiency. In terms of results, the SOM-KNN was found to
perform competitively with both KNN and other models, while having decreased
training times in digit recognition of car plates [2].
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2.2 SOM and K-Means

Annisa Uswatun Khasanah’s paper, ”A Comparison Study: Clustering using Self-
Organizing Map and K-means Algorithm,” thoroughly assesses the performance
of the Self-Organizing Map (SOM) and K-means clustering methods across three
diverse datasets. The evaluation incorporates various metrics, such as percent
misclassified, output visualization graphs, and Principal Component Analysis
(PCA), providing a comprehensive view of the strengths and weaknesses of both
algorithms. The paper’s methodology is clear, and the detailed analysis of clus-
tering outcomes for each dataset is commendable. However, a more in-depth ex-
ploration of dataset characteristics and a rationale for parameter choices would
enhance the paper. Furthermore, a more extensive comparison with existing
literature and the inclusion of sensitivity analysis would add robustness and
contextualization to the findings. Despite these considerations, the study offers
valuable insights into clustering methods. K-Means was shown to perform better
than SOM as it forms centers around more dense areas [1].

Additionally, the application of artificial intelligence algorithms, specifically
K-means and Self-Organizing Maps (SOM), in diagnosing spinal column is-
sues addresses the widespread problem of back pain. The study underscores the
scarcity of research in this field, attributing it to the complexities of conducting
multiple medical exams for accurate vertebral issue diagnosis and the poten-
tial benign nature of some back pain causes. Employing AI algorithms, notably
SOM, resulted in models with a generalization error below 10%, demonstrat-
ing the efficacy of these techniques in classification tasks. Comparative analysis
using metrics such as sensitivity, specificity, precision, negative predictive value
(NPV), and Cohen’s Kappa index revealed the superior performance of the SOM
model over the K-means model, particularly in detecting patients with vertebral
problems. The study aligns the models’ precision values with those reported in
similar studies and by expert orthopedic physicians, bolstering the proposed ap-
proach’s credibility. However, the study’s weaknesses include limited details on
specific dataset characteristics, potential biases, and challenges in interpreting
the obtained models. Additionally, the findings’ generalization may be limited
by the focus on specific AI algorithms, and a more comprehensive exploration
of various techniques could enhance the study’s robustness. In terms of results,
K-Means was shown to perform better than SOM as it forms centers around
more dense areas. [4].

2.3 Hanwritten Numeral Recognition

The paper explores a novel hybrid system that integrates Support Vector Ma-
chines (SVM) with Hidden Markov Models (HMM) for handwritten numeral
recognition. The aim is to address challenges related to pattern variability and
distortions. The hybrid approach is commended for its improved discrimination
capability, particularly emphasizing SVM’s strengths in achieving higher recog-
nition rates for isolated characters. The detailed experimental analysis conducted
on the UCI Machine Learning dataset includes preprocessing, feature extraction
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(employing Moment Invariants and Affine Moment Invariants), and the appli-
cation of SVM with an RBF kernel. The paper acknowledges the higher mem-
ory space requirements of SVM due to support vectors and suggests potential
space-saving measures. While the paper highlights SVM’s superiority in recog-
nition rates over HMM, it lacks a comprehensive comparison and analysis of the
strengths and weaknesses of both methods, leaving room for a more nuanced
understanding of trade-offs. The importance of parameter choices, such as C
and gamma in SVM, is mentioned, but a detailed exploration of their impact or
challenges in fine-tuning is needed. The paper outlines the integration of SVM
with HMM for word recognition but could benefit from more insights into pre-
processing, normalization steps, and potential challenges in the proposed hybrid
system. Additionally, discussing the generalizability of findings to other datasets
and scenarios would contribute to a more comprehensive understanding. The
SVM model yielded an accuracy of 96% [5].

2.4 SOM-KNN in Anomaly Detection

In the domain of anomaly detection for health monitoring in mechanical and
electronic systems, this research introduces an innovative method leveraging a
self-organizing maps-based k-nearest neighbor (SOM-KNN) algorithm. The pro-
posed approach adeptly tackles challenges associated with noisy datasets and
non-convex data distribution during training. The algorithm strategically ex-
tracts best matching units (BMUs) from a self-organizing map trained on healthy
data, eliminates noise-dominated BMUs, and employs k-nearest neighbor anal-
ysis for anomaly detection. The health indicator, computed through the Eu-
clidean distance to nearest neighbors, serves as a robust quantitative measure.
Experimental validation on cooling fan bearings effectively demonstrates the al-
gorithm’s prowess in monitoring system degradation, with the health indicator
consistently increasing as the system deteriorates. Significantly, the method ex-
hibits resilience to noise and demonstrates adaptability to non-convex data dis-
tributions, establishing its potential as a promising tool for anomaly detection
in diverse applications within the realm of mechanical and electronic systems
health monitoring [6].

3 Experiments

Effective evaluation metrics are essential in understanding the performance and
suitability of clustering algorithms and evaluating cluster disparity, cohesive-
ness, and clarity. Each of the following metrics was used in quantifying the
performance of our algorithms.

3.1 SSE (Sum of Squared Errors) Metric

The Sum of Squared Errors (SSE) is a common metric used in machine learning
to evaluate the performance of clustering algorithms, especially when the ground
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truth labels are unavailable. It quantifies the goodness of fit or the compactness
of clusters.

The primary objective of SSE is to minimize the sum of squared distances
between each data point in a cluster and its centroid. Given a dataset X com-
prising N data points {x1,x2, ...,xN} and K cluster centroids {c1, c2, ..., cK},
the SSE JSSE for K clusters is computed as:

JSSE =

N∑
i=1

K∑
k=1

wik∥xi − ck∥2,

where wik is an indicator variable denoting whether data point xi belongs
to cluster Ck (wik = 1) or not (wik = 0). This metric rewards tight, compact
clusters by penalizing data points far from their respective centroids.

SSE serves as an internal evaluation measure for clustering algorithms. Lower
SSE values generally indicate better clustering as they imply that the data points
within each cluster are closer to their centroid, suggesting better cohesion of
clusters.

Average SSE: The Average SSE measures the average distance between data
points within a cluster and its centroid. It is calculated as:

Average SSE =
1

N

N∑
i=1

∑
xi∈C

∥xi − c∥2

Here, N represents the total number of data points, C is a cluster, xi denotes
data points in cluster C, and c is the centroid of cluster C.

Average SSE assists in evaluating the clustering effectiveness, selecting an
optimal number of clusters (K), and determining the quality of cluster assign-
ments.

3.2 Silhouette Score

The Silhouette Score is a metric used to evaluate the quality of clusters produced
by clustering algorithms. It quantifies the cohesion and separation of clusters.

The primary goal of the Silhouette Score is to measure how well each data
point i fits within its assigned cluster compared to other clusters. It ranges from
-1 to 1, where:

Silhouette Score =
bi − ai

max(ai,bi)

Here, ai represents the average dissimilarity of i with other data points within
the same cluster (cohesion), and bi represents the lowest average dissimilarity
of i to any other cluster (separation). A score near +1 indicates well-separated
clusters, while scores near 0 suggest overlapping clusters and negative scores
imply incorrect clustering assignments.
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Computing Silhouette Score:

1. For each data point i:
(a) Calculate ai, the average distance between i and other points within the

same cluster.

(b) Calculate bi, the average distance of i to points in the nearest neighbor-
ing cluster.

2. Compute the Silhouette Score for each data point using the formula.

3. Calculate the overall Silhouette Score:

Average Silhouette Score =
1

N

N∑
i=1

bi − ai
max(ai,bi)

Higher Silhouette Scores indicate better-defined clusters with distinct bound-
aries and good internal cohesion. It aids in determining the optimal number of
clusters (K) by comparing scores for different K values.

3.3 Dataset

Our algorithms were run and tested on the optdigits.csv dataset. The dataset
is one of grayscale, handwritten digits on an 8x8 image, flattened to be a dataset
with 64 features. The dataset contains 3823 samples with class labels from 0-
9 corresponding to the digits 0-9 for each datapoint. The data was found in
the UCI Machine Learning Repository and contained no missing values. Thus,
preprocessing only included z-score normalization.

4 Methods

To compare the results of the Self-Organizing Maps (SOM) with other cluster-
ing techniques, both K-means and K-means++ algorithms were initially eval-
uated on the overall dataset. This preliminary evaluation provided a bench-
mark for clustering performance, allowing a comparative analysis with the SOM
approach. After assessing K-means and K-means++ on the dataset, the Self-
Organizing Maps algorithm was then applied. The intention was to explore how
SOM, known for its capability to uncover topological structures, fared against
traditional centroid-based approaches in capturing intricate data relationships.

4.1 K-Means

K-means, a well-known centroid-based clustering algorithm, is known for its
simplicity, efficiency, and widespread applicability. This algorithm aims to par-
tition a dataset into K clusters by optimizing a well-defined objective function,
emphasizing the minimization of the intra-cluster variance.

The optimization objective involves minimizing the sum of squared Euclidean
distances between data points and their assigned cluster centroids. For a dataset
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X consisting of N data points {x1,x2, ...,xN} in a D-dimensional space, and K
cluster centroids {c1, c2, ..., cK}, the objective function J is defined as:

J =

N∑
i=1

K∑
k=1

wik∥xi − ck∥2,

where wik is an indicator variable denoting whether data point xi belongs to
cluster Ck (wik = 1) or not (wik = 0). This binary indicator ensures that each
data point is assigned to exactly one cluster.

K-Means Algorithm Steps: The K-means algorithm iteratively refines its
cluster assignments and centroids through two fundamental steps:

1. Assignment Step: Assign each data point to the cluster whose centroid is
closest. Mathematically, for each data point xi, the assignment is determined
by:

wik =

{
1 if k = argminj ∥xi − cj∥2

0 otherwise

This step minimizes the within-cluster sum of squared distances.

2. Update Step: Recalculate the cluster centroids based on the newly assigned
data points. The centroid of cluster Ck is updated as:

ck =
1

|Ck|
∑

xi∈Ck

xi.

This step redefines the cluster centroids, ensuring convergence toward the
optimal configuration.

K-means is sensitive to initial centroid placements, often requiring multiple
random initializations to avoid convergence to local minima. Additionally, con-
vergence is achieved when there is no change in cluster assignments or centroids,
though the algorithm may not always converge to the global minimum due to
its susceptibility to initialization conditions.

K-means finds utility in diverse domains, including image segmentation, cus-
tomer segmentation, and anomaly detection. However, its effectiveness can be
compromised when clusters exhibit irregular shapes or varying sizes, as K-means
implicitly assumes clusters to be spherical and of comparable sizes.

4.2 K-Means++

K-means++, an improvement upon K-means, addresses the sensitivity of K-
means to initial centroid placements. This improved approach refines the ini-
tialization step by introducing a probabilistic method for choosing the initial
centroids, enhancing convergence, and mitigating the risk of local minima.
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The objective function for K-means++ remains the same as the K-means
algorithm.

K-means++ differs from K-means in the initialization phase. The steps are
as follows:

1. First Centroid: Select the first centroid uniformly at random from the data
points: c1 ∼ Uniform(X).

2. Subsequent Centroids: For each subsequent centroid j up to K, select
the next centroid from the data points with probability proportional to the
squared distance from the point to the nearest existing centroid:

cj ∼ Prob(x) =
D(x)2∑

x′∈X D(x′)2
,

where D(x) represents the distance from x to the nearest existing centroid.

Once initialized, K-means++ follows the same iterative assignment and up-
date steps as the classic K-means algorithm.

K-means++ provides a more robust initialization strategy compared to ran-
dom seeding, reducing the likelihood of converging to suboptimal solutions. Its
effectiveness is particularly pronounced when K is relatively large. However,
it does not entirely eliminate the sensitivity to the choice of K and may still
converge to local minima in certain scenarios.

4.3 Self-Organizing Maps (SOMs)

Self-Organizing Maps (SOMs), are different traditional clustering approaches
by preserving the topological structure of high-dimensional input data. Intro-
duced by Kohonen, SOMs employ competitive learning to map input space onto
a lower-dimensional grid, revealing intrinsic relationships between data points.

In competitive learning, neurons in the SOM grid compete to represent spe-
cific regions of the input space. Each neuron has a weight vector, and during
training, the neuron with the weight vector most similar to the input data point
is declared the winner. The weights of the winning neuron and its neighbors are
then adjusted.

One distinguishing feature of SOMs is their ability to maintain the topologi-
cal relationships between data points. Neurons positioned close in the SOM grid
respond similarly to similar input patterns, ensuring that the spatial arrange-
ment reflects the data’s inherent structure.

SOMs minimize the quantization error, representing the discrepancy between
the input data point and the weight vector of the winning neuron. For a dataset
X with N data points {x1,x2, ...,xN}, and a SOM grid with dimensions M×N ,
the objective function J is defined as:

J =

N∑
i=1

∥xi −wBMU(xi)∥
2,
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where wBMU(xi) is the weight vector of the Best Matching Unit (BMU), i.e.,
the winning neuron for the input data point xi.

SOM Algorithm Steps:

1. Initialization: Initialize the SOM grid with random weights.

2. Training Iterations: For each iteration, randomly select an input data
point and find the BMU. Adjust the weights of the BMU and its neighbors
based on a neighborhood function.

3. Convergence: Repeat the training iterations until the SOM reaches a stable
configuration.

SOMs find applications in various fields, including data visualization, fea-
ture extraction, and clustering. They are particularly useful for high-dimensional
datasets. However, SOMs require careful tuning of parameters such as learning
rate and neighborhood size. The grid topology and convergence criteria also
impact the final representation.

5 Results

The SOM algorithm creates a map matching the data’s topological distribution.

5.1 Hyperparameters

A 30x30 grid was chosen for our SOM, along with a linearly decaying learning
rate starting at 0.05 and a Manhattan Distance neighborhood function starting
at a distance of 4 before reducing stepwise. The value of k for both clustering
algorithms was chosen to be 10, as there are 9 possible digits.

Visual representations of the SOM are shown below. Calculating the label
for each neuron was accomplished using the following steps:

1. Calculate the BMU for a datapoint and store the point’s label in a list asso-
ciated with the selected neuron. Repeat for every datapoint in the dataset

2. Assign the argmax of the list as the label for that neuron in the SOM. Those
with an empty list are labeled as unclassified.

As seen in Figure 1, each of the nine digits in the dataset corresponds to a
color, while -1 (dark blue) corresponds to an unclassifiable neuron. The bound-
aries between classes are relatively clear. The distribution is roughly circular,
suggesting that the data may have a roughly spherical shape in high-dimensional
space.

Since each neuron has 64 dimensions, tSNE was used to visualize the distri-
bution of the grid in a 2D space, as seen in Figure 2. tSNE is similar to PCA,
except it can visualize nonlinear distribution boundaries. It calculates similarities
between points and places them on a normal distribution before using gradient
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Fig. 1: A visual representation of the SOM grid after 144500 iterations.

Fig. 2: A lower dimensional visualization of the SOM neurons using the tSNE
algorithm.

descent to find the optimal distances between similar/dissimilar points. The de-
tails of this algorithm are beyond the scope of this report.

The labels assigned to the SOM have no value to the clustering algorithms
and are merely included for visualization purposes.

Both K-Means and K-Means++ were run on the dataset before and after ap-
plying the SOM. After finding the centers, the SSE, Average SSE, and Silhouette
Score were computed for each. The results are displayed in Table 1.
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Table 1: Clustering Performance Before and After Applying SOM

K-Means K-Means++ K-Means With SOM K-Means++ With SOM

SSE 2.491× 106 2.492× 106 5.691× 103 5.721× 103

Average SSE 651.716 651.715 19.695 19.795

Silhouette Score 0.198 0.198 0.331 0.279

6 Discussion

The impact of clustering algorithms incorporating Self-Organizing Maps (SOM)
on the Sum of Squared Errors (SSE) becomes apparent in Table 1, where the
average SSE is notably influenced. Moreover, the Silhouette Score, calculated
across a range of values from 1 to 12, consistently peaked at 10, aligning with
the number of labels in the dataset. The introduction of SOM to both K-Means
and K-Means++ resulted in a significant upswing in the silhouette score. In
comparison, K-Means with SOM demonstrated superior performance compared
to K-Means++ with SOM. We attribute this distinction to the fact that the K-
Means++ initialization algorithm is designed to position centers farthest away
from each other. However, within SOM, the clusters exhibit closer proximity,
diminishing the impact of the initialization algorithm, particularly when consid-
ering the large number of points in the original dataset used by K-Means++.

In terms of overall performance metrics, the K-Means algorithm with SOM
exhibited superior clustering performance. This is likely due to the closer prox-
imity of the centers within the machine learning model facilitated by SOM,
resulting in denser and more compact clusters. The enhanced performance is
also attributed to the increased distinctiveness of clusters, facilitating clearer
grouping of other data points. This efficacy is achievable through SOM’s abil-
ity to reduce the dataset while preserving its diversity and correlation with the
dataset labels. There was no problem in overfitting the training set because the
K-Means and K-Means++ algorithms rely on using the whole dataset as both
the training and testing dataset.

In Figure 1, a two-dimensional representation of a high-dimensional dataset is
presented on a map, where data points are color-coded based on their positions.
The map exhibits a roughly circular shape, and the concentration of data points
increases towards the center, hinting at a potential spherical distribution in
the high-dimensional space. Distinct clusters of data points are discernible on
the map, implying inherent groupings within the dataset. Notably, the size of
data points correlates with their distance from the center, indicating a potential
relationship where outliers or anomalies may be more prevalent among points
situated farther from the central region.
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7 Conclusion

We researched an analysis of the K-Means and K-Means++ clustering algo-
rithms with and without SOMs. The goal was to battle the computationally
inefficient processes present in clustering algorithms. K-Means with SOM was
found to perform the best in terms of our clustering metrics, which included
SSE, Average SSE, and Silhouette Score. The values were 5691.993598618154,
19.69547957999361, and 0.3311073255139434, respectively. We believe that K-
Means consistently outperformed K-Means++ with and without SOM on the
Optdigits Dataset because the K-Means initialization algorithm seeks to place
the centers farthest apart when in fact they are closer in this dataset because of
the large number of centers needed to be found.

For our future work, we aim to investigate the effectiveness of incorporat-
ing Self-Organizing Maps (SOMs) into more intricate classification tasks and
diverse neural network architectures. Our motivation stems from the notable
success we observed when combining SOMs with K-Nearest Neighbors (KNN),
which substantially reduced training time. We aspire to extend this approach to
various neural network models, examining its impact on training efficiency while
maintaining high accuracy levels.
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